

Liquid Metal Nozzle Development CFD Modeling

PFC/ALPS Meeting

D. L. Youchison, R.E. Nygren, T.J. Tanaka,
J.E. Brantley, J.M McDonald
and the PMTF staff
Sandia National Laboratories

Chicago, IL November 19, 2003

OUTLINE

- I. Comparison of nozzle performance with CFD
 - Double compression nozzle
 - Conic round stream nozzle
 - Conic flat stream nozzle
 - Flat-bottom flat stream nozzle
 - Water testing Lithium testing
- II. CFD Modeling issues CFD-2000 vs. Fluent
 - Structured vs unstructured meshing
 - k-ε model, validity to free surface
 - VOF problems

PFCs: ORNL self-shielded nozzles

Side Cutaway View of Fast Flow

Outboard Nozzle

IFMIF and LIMITS nozzle models were created.

CFD-2000 Models

IFMIF double compression

Double compression IFMIF nozzle 2-D simulation – 10 m/s

CFD-2000 modified for free surface heat flux

Plastic prototypes were tested with water.

Round Stream Nozzle

- Area Compression Ratio of 16
- Goal: prevent surface wave and droplet formation

CFD-2000 structured mesh

CFD simulation predicts steady lithium flow.

Volume of Fluid of Liquid Lithium Flowing

Nozzle was tested with water.

- 5mm Diameter Jet 200mm long
- Flow Velocity of 10 m/s
- Stable Fluting occurs on surface
- No droplet formation or break-up

Nozzle produced lithium flow in LIMITS

Nozzles were machined from Swagelok endplugs.

Conic section

Cylindrical section

Conic nozzle simulation predicts stream behavior.

Lithium distribution at 1 ms for 1 m/s flow

Fluent

Conic section

CFD results agree with water test

Conic section

Flat-bottom nozzle is divergent along the minor axis.

Velocity Vectors Colored By Velocity Magnitude (m/s) (Time=2.0410e-01) Nov 14, 2003 FLUENT 6.1 (3d, segregated, ske, unsteady)

Flatbottom nozzle is convergent along the major axis.

Velocity Vectors Colored By Velocity Magnitude (m/s) (Time=2.0410e-01) Nov 14, 2003 FLUENT 6.1 (3d, segregated, ske, unsteady)

Cylindrical flat-bottom nozzle water test

Structured vs Unstructured

CFD2000 4.11 – structured meshes

- Complex 3-D nozzles are extremely difficult to decompose. (human intensive)
- No capability for CAD imports
- Fast solver (ijk indexed)

Fluent 6.1 – unstructured meshes

- Easy CAD imports, quick setup
- No decomposition required
- Slow solver (computer intensive)

3-d nozzle decomposition is labor intensive.

conic flat stream nozzle

easy import

• unstructured

• tet mesh

Grid (Time=1.0432e-03)

Nov 07, 2003 FLUENT 6.1 (3d, segregated, vof, ske, unsteady)

Turbulence modeling

Using standard k-ε model

- Compression nozzles have instabilities in the turbulence dissipation, ε, resulting in divergence.
- Meshing volume elements: inverted or poor aspect ratios.
- Standard k-ε not appropriate for near surface heat transfer.

$$\mu_T = C_{\mu} \rho k^2 / \epsilon$$
 $\kappa_T = \kappa / Pr_T$

VOF formalism

- Navier-Stokes breaks down below .1 atm. Vacuum cannot be modeled, only low pressure air.
- CFD-2000 modified for free surface heat flux.
- Fluent can perform free surface heat flux through user coding.
- Visualization and animation varies
 - Use FieldView for CFD-2000
 - Starting to use Ensight for Fluent

Concluding remarks

- Off-the-shelf components may be useful for preliminary experiments (flow and HHF testing).
- Continue to develop a flat stream nozzle.
- For PFC applications, there appears to be no easy, inexpensive solution, even without considering the MHD issues.
- Systematic CFD design, prototyping and testing are required.
- Careful, innovative fabrication techniques are needed.